FUCHSIAN AFFINE ACTIONS OF SURFACE GROUPS

FRANÇOIS LABOURIE

Abstract

Let λ_{q} be the irreducible representation of $S L(2, \mathbb{R})$ in $S L(q, \mathbb{R})$. Define a Fuchsian subgroup of $S L(q, \mathbb{R})$ to be a subgroup conjugate to a discrete subgroup of $\lambda_{q}(S L(2, \mathbb{R}))$. We prove in this paper that the fundamental group of a compact surface does not act properly on the affine space by affine tranformations if its linear part is Fuchsian.

1. Introduction

Let Γ be the fundamental group of a compact surface. Let λ_{q} be the irreducible q-dimensional representation of $S L(2, \mathbb{R})$ in $S L(q, \mathbb{R})$. We shall say a representation ρ of Γ in $S L(q, \mathbb{R})$ is Fuchsian (or q-Fuchsian) if $\rho=\lambda_{q} \circ \iota$, where ι is a discrete faithful representation of Γ in $S L(2, \mathbb{R})$. We shall also say by extension the image of ρ is Fuchsian, and that an affine action of a surface group is Fuchsian, if its linear part is Fuchsian.

Our main result is the following theorem:
Theorem 1.1. A finite dimensional affine Fuchsian action of the fundamental group of a compact surface is not proper.

In even dimensions, this is an easy remark, which has also been made in [2]. For dimension $4 p+1$, this theorem follows from the use of the Margulis invariant and Lemma 4.1, also due to Margulis (observation also made in [2]). This invariant and lemma were introduced in the work of Margulis [14] [15] in dimension 3, and later generalized in [16] [2] [9] [3] with his coauthors H. Abels and G. Soifer and also by T. Drumm in [9]. Therefore, our proof shall concentrate on dimensions $4 p+3$ although we shall recall the proof in other dimensions in Section 6.

[^0]This case bears special features: one should notice that G. Margulis has exhibited proper affine actions of a free group (with two generators) on \mathbb{R}^{3} [14] [15], constructions later explained by T. Drumm in [5] [6] [8] and by V. Charette and W. Goldman in [4]. Therefore, surface groups behave differently than free groups in these dimensions.

When $\operatorname{dim}(E)=3$, our result is a theorem of G. Mess [17], for which G. Margulis and W. Goldman [11] have obtained a different proof using Margulis invariant and Teichmüller theory. Our proof is based on similar ideas, but uses instead of Teichmüller theory a result on Anosov flows and a holomorphic interpretation of Margulis invariant, hence generalizing to higher dimensions.

It is a pleasure to thank M. Babillot, W. Goldman, G. Margulis for helpful conversations, as well as the referee for the interpretation of the isomorphism of Section 3 as an Eichler-Shimura isomorphism.

2. Representations of $S L(2, \mathbb{R})$, surfaces and connections

In this section, we describe the irreducible representation of $S L(2, \mathbb{R})$ of dimension $2 n+1$ as the holonomy of a flat connection.

It is well known that in dimension 3, the irreducible representation of $S L(2, \mathbb{R})$ is associated with the Minkowski model of the hyperbolic plane \mathbb{H}^{2}. More precisely, there exists a flat connection on $E=\mathbb{R} \oplus T \mathbb{H}^{2}$, such that the action of $S L(2, \mathbb{R})$ lifts to a connection preserving action on this bundle. Hence, we obtain a 3 -dimensional representation of $S L(2, \mathbb{R})$. Furthermore, the Minkowski model is obtained using the section $(1,0)$ of E.

We will now be more precise and explain this construction in more details in higher dimensions.

2.1 A flat connection

Let \mathbb{H}^{2} be the oriented hyperbolic plane with its complex structure. Let L_{k} be the complex line bundle over \mathbb{H}^{2} defined by

$$
L_{k}=\left(T \mathbb{H}^{2}\right)^{\otimes_{\mathbb{C}}^{k}} .
$$

Let

$$
E=\mathbb{R} \oplus L_{1} \oplus \ldots \oplus L_{n}
$$

Notice now that $S L(2, \mathbb{R})$ acts on all L_{k}, hence on E, by bundle automorphisms.

If Y is a section of E, Y_{0} will denote its component on the factor \mathbb{R}, and Y_{k} its component on L_{k}. The space of sections of the bundle V will be denoted $\Gamma(V)$. The metric on L_{i}, induced from the Riemannian metric on \mathbb{H}^{2} will be denoted \langle,$\rangle . By definition, if Y \in L_{k}, X \in L_{1}$, then $i_{X} Y$ is the element of L_{k-1} such that

$$
\forall Z \in L_{k}, \quad\left\langle i_{X} Y, Z\right\rangle=\langle Y, X \otimes Z\rangle .
$$

Let $\bar{\nabla}$ be the Levi-Civita connection on L_{1}, and, by extension, the induced connection on L_{k}. We introduce the following connection ∇ on E, defined if $X \in T \mathbb{H}^{2}, Y \in \Gamma(E)$ by

$$
\left\{\begin{aligned}
\left(\nabla_{X} Y\right)_{0}= & L_{X} Y_{0}+\frac{1}{2}(n+1)\left\langle X, Y_{1}\right\rangle \\
\forall k>0, & \left(\nabla_{X} Y\right)_{k}= \\
& (n-k+1) X \otimes Y_{k-1}+\bar{\nabla}_{X} Y_{k} \\
& +\frac{1}{4}(n+k+1) i_{X} Y_{k+1} .
\end{aligned}\right.
$$

Consider the family or real numbers, defined for $k \in\{0, n-1\}$, by

$$
a_{0}=1, a_{k+1}=\frac{1}{2^{2 k+1}} \prod_{j=0}^{j=k}\left(\frac{n+j+1}{n-j}\right) .
$$

Define a metric of signature $(n, n+1)$ on E by

$$
\lfloor Y, Z\rfloor=\sum_{k=0}^{k=n}(-1)^{k+1} a_{k}\left\langle Y_{k}, Z_{k}\right\rangle .
$$

The main result of this section is the following statement
Proposition 2.1. The connection ∇ is flat, and preserves the metric \lfloor,$\rfloor . Furthermore, the S L(2, \mathbb{R})$ action on E preserves the metric \lfloor, and the connection ∇. The resulting $(2 n+1)$-representation of $S L(2, \mathbb{R})$ is irreducible.

Proof. Long but straightforward computations (cf. Appendix A) show that ∇ is flat, preserves \lfloor,$\rfloor . Furthermore, the S L(2, \mathbb{R})$ action on E obviously preserves the metric \lfloor,$\rfloor and the connection \nabla$.

We finally have to check that the corresponding representation of the group $S L(2, \mathbb{R})$ is irreducible. For that let $S^{1} \subset S L(2, \mathbb{R})$, a subgroup isomorphic to the circle fixing a point x_{0}. The corresponding action on $L_{k}\left(x_{0}\right)$ is given by

$$
e^{i \theta}(u)=e^{k i \theta} u .
$$

This shows the representation is the irreducible $2 n+1$ dimensional one.

3. Cohomology and holomorphic differentials

Let $S=\mathbb{H}^{2} / \Gamma$ be a compact surface. Let ρ be a $(2 n+1)$-Fuchsian representation of Γ. In this section, we shall describe the vector space $H_{\rho}^{1}\left(\Gamma, \mathbb{R}^{2 n+1}\right)$ in terms of holomorphic $(n+1)$-differentials on S.

We use the notations of the previous sections. Let $E_{S}=E / \Gamma$ be the vector bundle over $S=\mathbb{H}^{2} / \Gamma$ coming from E.

Let \mathcal{H}^{q} the vector space of holomorphic q-differentials on S. Let $\Lambda^{p}\left(E_{S}\right)$ the vector space of p-forms on S with value in E_{S}. The flat connection ∇ gives rise to a complex

$$
0 \longrightarrow \Lambda^{0}(E) \xrightarrow{d^{\nabla}} \Lambda^{1}(E) \xrightarrow{d^{\nabla}} \Lambda^{2}(E) \longrightarrow 0
$$

The cohomology of this complex is $H_{\rho}^{*}\left(\Gamma, \mathbb{R}^{2 n+1}\right)$. From the metric on \mathbb{H}^{2}, we deduce an isomorphism $\omega \mapsto \check{\omega}$ of L_{k}^{*} with L_{k}. We define now a $\operatorname{map} \Phi$ by

$$
\Phi:\left\{\begin{array}{rl}
\mathcal{H}^{2 n+1} & \rightarrow \Lambda^{1}(E) \\
\omega & \mapsto
\end{array}\left(X \mapsto i_{X} \check{\omega} \in L_{n} \in E\right) .\right.
$$

We first prove:
Proposition 3.1. For every holomorphic $(n+1)$-differential ω

$$
d^{\nabla}(\Phi(\omega))=0
$$

Furthermore, if $\Phi(\omega)=d^{\nabla} u$, then $\omega=0$.
Proof. By definition,

$$
d^{\nabla} \Phi(\omega)(X, Y)=\nabla_{X} i_{Y} \check{\omega}-\nabla_{Y} i_{X} \check{\omega}-i_{[X, Y]} \check{\omega}
$$

Hence, if $n>1$

$$
d^{\nabla} \Phi(\omega)(X, Y)=\frac{2 n}{4}\left(i_{X} i_{Y} \check{\omega}-i_{Y} i_{X} \check{\omega}\right)+\left(\bar{\nabla}_{X} i_{Y} \check{\omega}-\bar{\nabla}_{Y} i_{X} \check{\omega}-i_{[X, Y]} \check{\omega}\right)
$$

Notice that $i_{X} i_{Y} \check{\omega}$ is symmetric in X and Y. Finally, the holomorphicity condition on ω implies

$$
\bar{\nabla}_{X} i_{Y} \check{\omega}-\bar{\nabla}_{Y} i_{X} \check{\omega}-i_{[X, Y]} \check{\omega}=0 .
$$

A similar proof (but with different constants) yields the result for $n=1$.
Next, assume $\Phi(\omega)=d^{\nabla} u$. The (non-Riemannian) metric on E and the Riemannian metric on \mathbb{H}^{2} induce a metric on $\Lambda^{*}(E)$, which
we denote $\lfloor,\rfloor_{\Lambda}$. One should notice here that even though this metric is neither positive nor negative, since $\Phi(\omega)$ is a section of a bundle on which the metric is either positive or negative, we have

$$
\lfloor\Phi(\omega), \Phi(\omega)\rfloor_{\Lambda}=0 \Rightarrow \Phi(\omega)=0 \Rightarrow \omega=0 .
$$

Let $\left(d^{\nabla}\right)^{*}$ be the adjoint of d^{∇}. One has, if $\left(X_{1}, X_{2}\right)$ is a basis of $T \mathbb{H}^{2}$,

$$
\left(d^{\nabla}\right)^{*}(\phi(\omega))=-\sum_{k=1}^{k=2} \nabla_{X_{k}}\left(i_{X_{k}} \check{\omega}\right) .
$$

A short calculation shows

$$
\left(d^{\nabla}\right)^{*}(\phi(\omega))=-\sum_{k=1}^{k=2} \bar{\nabla}_{X_{k}}\left(i_{X_{k}} \check{\omega}\right),
$$

and this last term is 0 by holomorphicity. We have just proved that

$$
\left(d^{\nabla}\right)^{*} \Phi(\omega)=0
$$

Hence, $\Phi(\omega)=d^{\nabla} u$ implies

$$
\lfloor\Phi(\omega), \Phi(\omega)\rfloor_{\Lambda}=\left\lfloor\left(d^{\nabla}\right)^{*} \Phi(\omega), u\right\rfloor_{\Lambda}=0 .
$$

This ends the proof. q.e.d.
It follows from the previous proposition that Φ gives rise to a map (also denoted Φ) from \mathcal{H}^{n+1} to the space $H_{\rho}^{1}\left(\Gamma, \mathbb{R}^{2 n+1}\right)$. We have:

Corollary 3.2. The map Φ is an isomorphism from \mathcal{H}^{n+1} to the space $H_{\rho}^{1}\left(\Gamma, \mathbb{R}^{2 n+1}\right)$.

Proof. Indeed, we have just proved that Φ is injective. Furthermore, if $\chi(S)$ is the Euler characteristic of S, we have

$$
\operatorname{dim}\left(H_{\rho}^{1}\left(\Gamma, \mathbb{R}^{2 n+1}\right)\right) \leq(2 n+1) \chi(S)
$$

But, by Riemann-Roch,

$$
\operatorname{dim}\left(\mathcal{H}^{n+1}\right)=(2 n+1) \chi(S) .
$$

Hence, the corollary follows. q.e.d.

3.1 Note added to the proof: Eichler-Shimura isomorphism

W. Goldman and the referee have both explained to me that the isomorphism between \mathcal{H}^{n+1} and $H_{\rho}^{1}\left(\Gamma, \mathbb{R}^{2 n+1}\right)$ is a fairly well known instance of an Eichler-Shimura isomorphism. Indeed, let $V=\mathbb{R}^{2 n+1}, \kappa$ be the canonical line bundle over S. Then \mathcal{H}^{n+1} is the space $H^{0}\left(S ; \mathfrak{o}\left(\kappa^{n+1}\right)\right)$ of global holomorphic sections of κ^{n+1}. The global holomorphic sections of κ^{-n} over \mathbb{P}^{1} form a vector space isomorphic to $V \otimes \mathbb{C}$; this isomorphism is equivariant with respect to the natural actions of $S L(2, \mathbb{R})$. Thus, there is a sheaf homomorphism

$$
V^{*} \longrightarrow \mathfrak{o}\left(\kappa^{-n}\right),
$$

which defines a holomorphic section of

$$
\kappa \otimes V \otimes \kappa^{-1-n},
$$

and a cohomology class

$$
Z_{n} \in H^{1}\left(S ; V \otimes \kappa^{-1-n}\right) .
$$

Hence if $\omega \in H^{0}\left(S ; \mathfrak{o}\left(\kappa^{n+1}\right)\right)$, the product $\omega \cdot Z_{n}$ belongs to $H^{1}(S, V)$. The Eichler-Shimura isomorphism is the map $\omega \mapsto \omega \cdot Z_{n}$.

The original references to the Eichler-Shimura isomorphism (case $\mathrm{n}=1$) are [10] [19] and a useful reference is [13].

This interpretation explains the isomorphism of 3.2 , although the point of the construction made in this section is to have an explicit isomorphism at the level of forms in our setting.

4. A de Rham interpretation of Margulis invariant

The irreducible representation of $S L(2, \mathbb{R})$ of dimension $2 n+1$ preserves a metric \lfloor, \rfloor of signature $(n, n+1)$.

4.1 Loxodromic elements

We define a loxodromic element in $S O(n, n+1)$ to be \mathbb{R}-split and in the interior of a Weyl chamber. This just means all eigenvalues are real and have multiplicity 1 . Recall that 1 always belong to the spectrum of a loxodromic element. Notice that all the elements, except the identity, of a $(2 n+1)$-Fuchsian surface group are loxodromic.

4.2 The invariant vector of a loxodromic element

Chose now, once and for all, an orientation on $\mathbb{R}^{2 n+1}$. The light cone without the origin - has two components. Let's also choose one of these components.

Let γ be a loxodromic element. It follows from the previous choices that we have a well defined eigenvector, the invariant vector, denoted v_{γ}, associated to the eigenvalue 1 .

Indeed, all the other eigenvectors are lightlike. We order all the eigenvalues not equal to 1 , in such a way that $\lambda_{i}<\lambda_{i+1}$. Thanks to our choices, we may pick one eigenvector e_{i} in the preferred component of the light cone for all the eigenvalues λ_{i} different than 1 . We now choose v_{γ} of norm 1 , such that $\left(v_{\gamma}, e_{1}, \ldots, e_{2 n}\right)$ is positively oriented.

4.3 Margulis invariant

Let $I s o(n, n+1)=\mathbb{R}^{2 n+1} \rtimes S O(n, n+1)$ be the group of orientation preserving isometries of $\mathbb{R}^{2 n+1}$ as an affine space. For γ in $\operatorname{Iso}(n, n+1)$, $\hat{\gamma}$ denotes its linear part. We shall say an element of $\operatorname{Iso}(n, n+1)$ is loxodromic if its linear part is a loxodromic element of $S O(n, n+1)$.

The Margulis invariant ([14] [15]) of a loxodromic element γ of Iso($n, n+1$) is

$$
\mu(\gamma)=\left\lfloor\gamma(x)-x, v_{\hat{\gamma}}\right\rfloor
$$

where x is an element of $\mathbb{R}^{2 n+1}$. A quick check shows $\mu(\gamma)$ does not depend on x.

4.4 Margulis invariant and properness of an affine action

Let γ_{1} and γ_{2} be two loxodromic elements. Let E_{i}^{+}(resp. E_{i}^{-}) be the space generated by the eigenvectors of $\hat{\gamma}_{i}$ corresponding to the eigenvalues of absolute value greater (resp. less) than 1 .

We say γ_{1} and γ_{2} are in general position if the two decompositions

$$
\mathbb{R} . v_{\hat{\gamma}_{i}} \oplus E_{i}^{+} \oplus E_{i}^{-},
$$

are in general position.
Notice that for a $(2 n+1)$-Fuchsian group, two (noncommensurable) elements are loxodromic and in general position.

In [14] [15] (see also [7]) G. Margulis has proved the following magic lemma:

Lemma 4.1. If two loxodromic elements γ_{1}, γ_{2}, in general position, are such that $\mu\left(\gamma_{1}\right) \mu\left(\gamma_{2}\right) \leq 0$, then the group generated by γ_{1} and γ_{2} does not act properly on $\mathbb{R}^{2 n+1}$.

Drumm's articles [7], [9] as well as the survey by Abels [1] contain a more accessible and lucid proof of this lemma.

4.5 An interpretation of Margulis invariant

Let ρ a representation of Γ in $\operatorname{Iso}(n, n+1)$, whose linear part, $\hat{\rho}$, is Fuchsian. Let $E_{S}=\mathbb{R} \oplus L_{1} \oplus \ldots \oplus L_{n}$ the flat bundle over S described in 2.1 whose holonomy is $\hat{\rho}$.

We describe now ρ as an element of $H_{\hat{\rho}}^{1}\left(\Gamma, \mathbb{R}^{2 n+1}\right)$.
Let $\alpha \in H_{\hat{\rho}}^{1}\left(\Gamma, \mathbb{R}^{2 n+1}\right)$, interpreted as an element of $\Lambda^{1}\left(E_{S}\right)$. Let ∇^{α} be the flat connection on $F=\mathbb{R} \oplus E_{S}$ defined by

$$
\nabla_{X}^{\alpha}(\lambda, V)=\left(L_{X} \lambda, \lambda \cdot \alpha(X)+\nabla_{X} V\right) .
$$

We claim there exists $\alpha \in H_{\hat{\rho}}^{1}\left(\Gamma, \mathbb{R}^{2 n+1}\right)$ such that the holonomy of ∇^{α} is ρ. Of course, here, $\mathbb{R}^{p} \rtimes S L(p, \mathbb{R})$ is identified with a subgroup of $G L(p+1, \mathbb{R})$.

Let now c be a closed curve on S, represented in homotopy by the conjugacy class of some element γ. Since $v_{\hat{\rho}(\gamma)}$ is invariant under $\hat{\rho}(\gamma)$, it gives rise to a parallel section v_{c} of $\left.E\right|_{c}$.

We first prove the following statement:
Proposition 4.2. Let c, ρ, γ, α be as above. Then

$$
\mu(\rho(\gamma))=\int_{c}\left\lfloor\alpha, v_{c}\right\rfloor .
$$

Proof. We shall use the previous notations. We parametrise c by the circle of length 1 . Let π be the covering $\mathbb{H}^{2} \rightarrow S$. Consider a lift \widetilde{c} of c on the universal cover of S. The bundle $\pi^{*} F$ becomes trivial. The canonical section σ corresponding to the \mathbb{R} factor in F, gives rise to a map

$$
i: \mathbb{H}^{2} \rightarrow \mathbb{R}^{2 n+1}
$$

taking value in the affine hyperplane

$$
P=\left\{(1, u) \in \mathbb{R}^{2 n+1}\right\} .
$$

Let $\bar{c}=i \circ \widetilde{c}$, and let's identify $\rho(\gamma)$ with γ. By definition now:

$$
\begin{aligned}
\mu(\gamma) & =\left\lfloor\rho(\gamma)(\bar{c}(0))-\bar{c}(0), v_{\hat{\gamma}}\right\rfloor \\
& =\left\lfloor\bar{c}(1)-\bar{c}(0), v_{\hat{\gamma}}\right\rfloor \\
& =\int_{0}^{1}\left\lfloor\dot{\bar{c}}(s), v_{\hat{\gamma}}\right\rfloor d s .
\end{aligned}
$$

Now, we interpret the last term on F and we obtain

$$
\begin{aligned}
\mu(\gamma) & =\int_{0}^{1}\left\lfloor\nabla_{\dot{\dot{c}(s)}}^{\alpha} \sigma, v_{c}(s)\right\rfloor d s \\
& =\int_{0}^{1}\left\lfloor\alpha(\dot{c}(s)), v_{c}(s)\right\rfloor d s \\
& =\int_{c}\left\lfloor\alpha, v_{c}\right\rfloor .
\end{aligned}
$$

This ends the proof. q.e.d.

4.6 The invariant vector as a section

In this subsection, we assume $n=2 p+1$, so that our representation is of dimension $4 p+3$.

We use the notations of the previous subsections. In particular, let $\gamma \in \Gamma$. Let $v=v_{\hat{\rho}(\gamma)}$. Let c be the closed geodesic (for the hyperbolic metric) corresponding to the element γ.

Recall that v_{γ} gives rise to a section v_{c} along the closed geodesic, which is parallel.

In this subsection, we wish to describe v_{c} explicitly. Let J the complex structure of S. Let's introduce the following section (along c) defined by

$$
\begin{aligned}
\left(w_{c}\right)_{2 k} & =0 \\
\left(w_{c}\right)_{2 k+1} & =J(-4)^{k} \prod_{l=1}^{l=k}\left(\frac{p-l}{p+l+1}\right) \underbrace{\dot{c} \otimes \ldots \otimes \dot{c}}_{2 k+1} .
\end{aligned}
$$

Proposition 4.3. The section w_{c} of E_{S} is parallel along c. Furthermore, there exists $\varepsilon \in\{-1,1\}$ independent of c such that

$$
v_{c}=\varepsilon \frac{w_{c}}{\sqrt{\left\lfloor w_{c}, w_{c}\right\rfloor}}
$$

Proof. A straightforward computation shows that w_{c} (hence v_{c}) is parallel. Furthermore w_{c} is a spacelike vector, and by construction v_{c} has norm 1.

It remains to prove that v_{c} has the correct orientation. For that consider any geodesic arc u in \mathbb{H}^{2} parametrized by $[0, L]$. We have a basis of $\left.E\right|_{u(t)}$ given by

$$
B(t)=(1, \dot{u}, J \dot{u}, \ldots, \underbrace{\dot{u} \otimes \ldots \otimes \dot{u}}_{n}, J \underbrace{\dot{\dot{ } \otimes \ldots \otimes \dot{u}}}_{n}) .
$$

We may now consider the isometry $\gamma(u)$ sending $B(0)$ to $B(L)$. This is a loxodromic isometry. Next, consider the following section of E along u given by

$$
\begin{aligned}
\left(w_{u}\right)_{2 k} & =0 \\
\left(w_{u}\right)_{2 k+1} & =J(-4)^{k} \prod_{l=1}^{l=k}\left(\frac{p-l}{p+l+1}\right) \underbrace{\dot{u} \otimes \ldots \otimes \dot{u}}_{2 k+1} .
\end{aligned}
$$

This section is parallel along u and therefore gives rise to a vector proportional to the invariant vector of $\gamma(u)$.

Next, by continuity, this proportion is constant. Applying this remark to a lift in the universal cover of our closed geodesic, this ends the proof. q.e.d.

5. Main theorem in dimension $4 p+3$

Again, let ρ be a representation of a compact surface group Γ in the group of affine transformations of an affine space of dimension $4 p+3$, whose linear part $\hat{\rho}$ is Fuchsian.

Notice first that for every nontrivial element γ of $\Gamma, \hat{\rho}(\gamma)$ is loxodromic. Indeed, as an element of $S L(2, \mathbb{R}), \gamma$ is conjugate to a diagonal matrix

$$
\left(\begin{array}{cc}
\lambda & 0 \\
0 & \lambda^{-1}
\end{array}\right)
$$

where $\lambda<1$. Now, the eigenvalues of $\hat{\rho}(\gamma)$, are those of its $2 n$-th symmetric power:

$$
\lambda^{2 n}<\lambda^{2 n-2}<\ldots \lambda^{2}<1<\lambda^{-2}<\ldots<\lambda^{2-2 n}<\lambda^{-2 n} .
$$

This proves $\hat{\rho}(\gamma)$ is loxodromic.
We assume now that $\rho(\Gamma)$ acts properly on $\mathbb{R}^{4 p+3}$. The representation ρ is described from $\hat{\rho}$ as an element α of $H_{\hat{\rho}}^{1}\left(\Gamma, \mathbb{R}^{4 p+3}\right)$.

According to Corollary 3.2, this element α is described by a holomorphic $(2 p+2)$-differential ω.

Let $\gamma \in \Gamma$, and c the corresponding closed geodesic. From Proposition 4.2, we get

$$
\mu(\rho(\gamma))=\int_{c}\left\lfloor\alpha, v_{c}\right\rfloor .
$$

From Proposition 4.3, we deduce there exists a constant K_{1} just depending on p such that

$$
\mu(\rho(\gamma))=K_{1} \int_{c}\lfloor i_{c} \omega, J \underbrace{\dot{c} \otimes \ldots \otimes \dot{c}}_{2 p+1}\rfloor d t .
$$

From the constructions explained in Section 2.1, we finally obtain there exists a constant K_{2} just depending on p such that

$$
\begin{aligned}
\mu(\rho(\gamma)) & =K_{2} \int_{c}\langle i_{\dot{c}} \check{\omega}, J \underbrace{\dot{c} \otimes \ldots \otimes \dot{c}}_{2 p+1}) d t \\
& =-K_{2} \int_{c} \Im(\omega(\underbrace{\dot{c} \otimes \ldots \otimes \dot{c}}_{2 p+2})) d t
\end{aligned}
$$

Let $U S$ be the unit tangent bundle of S. Let f be the function defined on $U S$ by

$$
f(u)=\Im(\omega(\underbrace{u \otimes \ldots \otimes u}_{2 p+2})) .
$$

From Lemma 4.1 and the previous computation, we obtain that the integral of f along closed orbits of the geodesic flow has a constant sign. On the other hand, let λ be the Lebesgue measure, we have

$$
\int_{U S} f d \lambda=0 .
$$

Indeed, let β be a complex number such that $\beta^{2 p+2}=-1$. Scalar multiplication by β defines a diffeomorphism of $U S$, which preserves both the orientation and the Lebesgue measure. Lastly $f \circ \beta=-f$ and this proves the last formula.

The conclusion of the proof follows at once from the following lemma, since the Lebesgue measure for the geodesic flow of a constant curvature surface is the Bowen-Margulis measure.

Lemma 5.1. Let M be a compact manifold equipped with a topologically transitive Anosov flow. Let ν be the Bowen-Margulis measure. Let f be a Hölder function defined on M such that its integral on every closed orbit is positive, then the integral of f with respect to ν is positive.

I could not find a proper reference in the literature of this specific lemma, for which I claim no originality. G. Margulis has suggested to use a central limit theorem of M. Ratner [18]. We shall rather explain a proof using the notions of pressure and equilibrium states.

Proof. Let's denote by \mathcal{M} the space of invariant probability measures. For any μ in $\mathcal{M}, h(\mu)$ will be its entropy. Recall that the BowenMargulis measure maximizes the entropy. Next define the pressure of a Hölder function f by

$$
P(f)=\sup _{\mu \in \mathcal{M}}\left(h(\mu)+\int_{M} f d \mu\right) .
$$

By definition, an invariant measure μ is called an equilibrium state for f, if $P(f)=h(\mu)+\int_{M} f d \mu$. Hence, the Bowen-Margulis measure is an equilibrium state for the zero function.

Thanks to results of Bowen, every Hölder function admits a unique equilibrium state. This is stated as Theorem 20.3.7 in [12]. Furthermore, according to Proposition 20.3.10 of [12], two Hölder continuous functions with the same equilibrium state are equal up to the addition of a constant and a coboundary. More precisely, this result is stated in the case of diffeomorphisms but the proof generalizes for flows.

Now, let f be as in the lemma. Assume that $\int_{M} f d \nu=0$ and let's look for a contradiction. Recall that for a topologically transitive Anosov flow, as a consequence of the shadowing lemma, every invariant measure is a weak limit of barycenters of measures supported on closed orbits [20]. Hence

$$
\forall \mu \in \mathcal{M}, \int_{M} f d \mu \geq 0
$$

It follows that

$$
P(-f)=P(0)=h(\nu)=h(\nu)+\int_{M}(-f d \nu) .
$$

Hence, the zero function and $-f$ have the same equilibrium state ν. It follows from the above discussion that f is a cohomologous to a constant. On one hand, this constant is zero, since $\int_{M} f d \nu=0$. On the
other hand, this constant is nonzero because integrals of f over closed orbits are positive. Here is our contradiction. Actually, the proof would work for any measure in the measure class of a Gibbs measure, although we shall not need it. q.e.d.

6. Other dimensions

The other dimensions are either easy (even case) or follows from the immediate use of Margulis invariant ($4 p+1$ case) as we shall explain now. Similar arguments can be found in [2].

Let λ be the representation of $S L(2, \mathbb{R})$ of even dimension. Let h be a loxodromic element of $S L(2, \mathbb{R})$. Then 1 will not belong to the spectrum of $\lambda(h)$. It follows, that if ρ is a representation of Γ in even dimension whose linear part is Fuchsian then for all γ in Γ not equal to the identity then $\rho(\gamma)$ does not act properly.

Last, in dimensions $4 p+1$, the Margulis invariant is such that $\mu\left(\gamma^{-1}\right)=-\mu(\gamma)$. It follows at once from Lemma 4.1, that if ρ is a representation of Γ in dimension $4 p+1$ whose linear part is Fuchsian, if γ_{1} and γ_{2} are noncommensurable elements of Γ then $\rho\left(\gamma_{1}\right)$ and $\rho\left(\gamma_{2}\right)$ generate a group that does not act properly on the affine space. Of course, the point in our previous discussion is that in dimension $4 p+3$ then $\mu\left(\gamma^{-1}\right)=\mu(\gamma)$, hence such an argument do not work and actually, free groups (even Fuchsian ones) can act properly, see [14], [15] and [7].

Appendix A: some computations

We explain here how to make the computations delayed from the proof of Proposition 2.1. Let X, Z two commuting vector fields on \mathbb{H}^{2}. Let ω the Kähler form of \mathbb{H}^{2} defined by $\omega(Z, X)=\langle J Z, X\rangle$. Let's first introduce the following notation. If f is a function of Z and X then

$$
\underline{f(Z, X)}=f(Z, X)-f(X, Z) .
$$

With these notations at hands, we have

$$
\underline{Z \otimes\langle X, Y\rangle}=\frac{1}{2}\left(\underline{Z \otimes i_{X} Y}\right)=-\frac{1}{2}\left(\underline{i_{Z}(X \otimes Y)}\right)=-\omega(Z, X) J Y
$$

Let \bar{R} be the curvature tensor of $\bar{\nabla}$ and recall that

$$
\bar{R}(Z, X) Y_{k}=k \omega(Z, X) J Y .
$$

Let R be the curvature tensor of ∇. We first have

$$
\begin{aligned}
(R(Z, X) Y)_{0}= & +\frac{1}{2}(n+1)(n) \underline{\langle Z, X\rangle \otimes Y_{0}} \\
& +\frac{1}{8}(n+1)(n+2) \underline{\left\langle Z, i_{X} Y_{2}\right\rangle} \\
= & 0 .
\end{aligned}
$$

Next

$$
\begin{aligned}
(R(Z, X) Y)_{1}= & +\frac{1}{2} n(n+1) \underline{Z \otimes\left\langle X, Y_{1}\right\rangle}+\bar{R}(Z, X) Y_{1} \\
& +\frac{1}{4}(n+2)(n-1) \underline{i_{Z}\left(X \otimes Y_{1}\right)} \\
& +\frac{1}{16}(n+2)(n+3) \underline{i_{Z} i_{X} Y_{3}} \\
= & \omega(Z, X) J Y\left(-\frac{1}{2} n(n+1)+1+\frac{2}{4}(n+2)(n-1)\right) \\
= & 0 .
\end{aligned}
$$

It remains to consider the case $k>1$. We get

$$
\begin{aligned}
(R(Z, X) Y)_{k}= & \bar{R}(Z, X) Y_{k}+(n-k+1)(n-k+2) \underline{\left(Z \otimes X \otimes Y_{k-2}\right)} \\
& +\frac{1}{4}\left((n-k+1)(n+k) \underline{Z \otimes i_{X} Y_{k}}\right. \\
& \left.+(n+k+1)(n-k) \underline{i_{Z}\left(X \otimes Y_{k}\right)}\right) \\
& +\frac{1}{16}(n+k+1)(n+k+2) \underline{i_{Z} i_{X} Y_{k+2}} .
\end{aligned}
$$

Hence

$$
\begin{aligned}
& (R(Z, X) Y)_{k} \\
& \quad=\omega(Z, X) J Y\left(-\frac{2}{4}(n-k+1)(n+k)+k+\frac{2}{4}(n+k+1)(n-k)\right) \\
& \quad=0 .
\end{aligned}
$$

We have just proved the connection ∇ is flat. Now, we show ∇ preserves
\lfloor,$\rfloor . Let Y$ a section of E. Then

$$
\begin{aligned}
\left\lfloor\nabla_{X} Y, Y\right\rfloor= & \sum_{k=0}^{k=n}(-1)^{k+1} a_{k}\left\langle\left(\nabla_{X}\right) Y_{k}, Y_{k}\right\rangle \\
= & -\left\langle L_{X} Y_{0}, Y_{0}\right\rangle+\sum_{k=1}^{k=n}(-1)^{k+1} a_{k}\left\langle\bar{\nabla}_{X} Y_{k}, Y_{k}\right\rangle \\
& -\frac{1}{2}(n+1)\left\langle\left\langle X, Y_{1}\right\rangle, Y_{0}\right\rangle \\
& +(-1)^{k+1} \sum_{k=1}^{k=n} a_{k} \frac{(n+k+1)}{4}\left\langle i_{X} Y_{k+1}, Y_{k}\right\rangle \\
& +(-1)^{k+1} \sum_{k=1}^{k=n} a_{k}(n-k+1)\left\langle X \otimes Y_{k-1}, Y_{k}\right\rangle .
\end{aligned}
$$

We make a change of variables in the last term, and get

$$
\begin{aligned}
\left\lfloor\nabla_{X} Y, Y\right\rfloor= & L_{X}\lfloor Y, Y\rfloor-\frac{1}{2}(n+1)\left\langle\left\langle X, Y_{1}\right\rangle, Y_{0}\right\rangle \\
& +n a_{1}\left\langle X \otimes Y_{0}, Y_{1}\right\rangle+\sum_{k=1}^{k=n}(-1)^{k}\left(a_{k+1}(n-k)\right. \\
& \left.-a_{k} \frac{(n+k+1)}{4}\right)\left\langle X \otimes Y_{k}, Y_{k+1}\right\rangle .
\end{aligned}
$$

To conclude, we just have to remark that

$$
a_{1}=\frac{n+1}{2 n}, \frac{a_{k+1}}{a_{k}}=\frac{n+k+1}{4(n-k)} .
$$

References

[1] H. Abels, Properly discontinuous groups of affine transformations, A survey, Preprint.
[2] H. Abels, G. Margulis \& G. Soifer, Properly discontinuous groups of affine transformations with orthogonal linear part, C. R. Acad. Sci. Paris Sr. I Math. 324 (1997) 253-258.
[3] , On the Zariski closure of the linear part of a properly discontinuous group of affine transformations, SFB Bielefeld Preprint 97-083.
[4] V. Charette \& W. Goldman, Affine Schottky groups and crooked tilings, to appear in Proc. workshop Crystallographic Groups and their Generalizations II, in Kortrijk, Belgium, Contemp. Math., Amer. Math. Soc.
[5] T. Drumm \& W. Goldman, Complete flat Lorentz 3-manifolds with free fundamental group, Int. J. Math. 1 (1990) 149-161.
[6] T. Drumm, Fundamental polyhedra for Margulis space-times, Topology 31 (4) (1992) 677-691.
[7] , Examples of non proper affine actions, Mich. Math. J. 30 (1992), 435-442.
[8] , Linear holonomy of Margulis space-times, J. Differential Geom. 38 (1993) 679-691.
[9] , Translations and the holonomy of complete affine flat manifolds, Math. Res. Lett. 1 (1994) 757-764.
[10] M. Eichler, Eine Verallgemeinerung der Abelschen Integrale, Math. Z. 67 (1957) 267-298.
[11] W. Goldman \& G. Margulis, Flat Lorentz 3-manifolds and cocompact Fuchsian groups, to appear in Proc. workshop Crystallographic Groups and their Generalizations II, in Kortrijk, Belgium, Contemp. Math., Amer. Math. Soc.
[12] B. Hasselblatt \& A. Katok, Introduction to the modern theory of dynamical systems, Encyclopedia of Mathematics and Its Applications 54, Cambridge Univ. Press, Cambridge, 1997.
[13] S. Katok \& J. Millson, Eichler-Shimura homology, intersection numbers and rational structures on spaces of modular forms, Trans. Amer. Math. Soc. 300 (1987) 737-757.
[14] G. Margulis, Free properly discontinuous groups of affine transformations, Dokl. Akad. Nauk SSSR 272 (1985) 181-193.
[15] , Complete affine locally flat manifolds with a free fundamental group, J. Soviet. Math. 134 (1987) 129-131.
[16] , On the Zariski closure of the linear Part of a properly discontinuous group of affine transformations, Preprint, 1987.
[17] G. Mess, Lorentz spacetimes of constant curvature, Inst. Hautes Études Sci, Preprint, 1990.
[18] M. Ratner, The central limit theorem for geodesic flows on n-dimensional manifolds of negative curvature, Israel J. Math. 16 (1973) 181-197.
[19] G. Shimura, Sur les intégrales attachées aux formes automorphes, J. Math. Soc. Japan 11 (1959) 291-311.
[20] K. Sigmund, On the space of invariant measures for hyperbolic flows, Amer. J. Math. 94 (1972) 31-37.

Université Paris-Sud

[^0]: Received May 26, 2000. L'auteur remercie l'Institut Universitaire de France.

